ค้นหา
  
Search Engine Optimization Services (SEO)

Electron microscope

กล้องจุลทรรศน์อิเล็กตรอน (อังกฤษ: Electron microscope) เป็นกล้องจุลทรรศน์แบบหนึ่งที่ใช้อิเล็กตรอนที่ถูกเร่งความเร็วเป็นแหล่งที่มาของการส่องสว่าง เนื่องจากอิเล็กตรอนมีความยาวคลื่นสั้นกว่าโฟตอนของแสงที่มนุษย์มองเห็นได้ถึง 100,000 เท่า กล้องจุลทรรศน์อิเล็กตรอนจึงมีกำลังขยายสูงกว่ากล้องจุลทรรศน์แบบใช้แสงและสามารถเปิดเผยให้เห็นโครงสร้างของวัตถุที่มีขนาดเล็กมากๆได้ กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านสามารถให้รายละเอียดได้สูงถึง 50 picometre และมีกำลังการขยายได้ถึงประมาณ 10,000,000 เท่า ขณะที่ส่วนใหญ่ของกล้องจุลทรรศน์แบบแสงจะถูกจำกัดโดยเลี้ยวเบนของแสงที่ให้ความละเอียดประมาณ 200 นาโนเมตรและกำลังขยายที่ใชการได้ต่ำกว่า 2000 เท่า

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านใช้เลนส์ไฟฟ้าสถิตและแม่เหล็กไฟฟ้า (อังกฤษ: electrostatic and electromagnetic lenses) ในการควบคุมลำแสงอิเล็กตรอนและโฟกัสมันเพื่อสร้างเป้นภาพ เลนส์แสงอิเล็กตรอนเหล่านี้เปรียบเทียบได้กับเลนส์แก้วของกล้องจุลทรรศน์แบบใช้แสงออปติคอล

กล้องจุลทรรศน์อิเล็กตรอนถูกนำไปใช้ในการตรวจสอบโครงสร้างขนาดเล็กมากๆของตัวอย่างทางชีวภาพและอนินทรีที่หลากหลายรวมทั้งจุลินทรีย์ เซลล์ชีวะ โมเลกุลขนาดใหญ่ ตัวอย่างชิ้นเนื้อ โลหะ และคริสตัล ด้านอุตสาหกรรมกล้องจุลทรรศน์อิเล็กตรอนมักจะใช้สำหรับการควบคุมคุณภาพและการวิเคราะห์ความล้มเหลว กล้องจุลทรรศน์อิเล็กตรอนที่ทันสมัยสามารถผลิตภาพถ่ายขนาดจิ๋วแบบอิเล็กตรอน (อังกฤษ: electron micrograph) โดยใช้กล้องดิจิตอลแบบพิเศษหรือ frame grabber (อุปกรณ์อิเล็กทรอนิกที่ใช้จับภาพนิ่งจากสัญญาณวิดีโอแอนะลอกหรือดิจิตอล) ในการจับภาพ

อ้างถึง Dennis Gabor ในปี 1928 นักฟิสิกส์ Le? Szil?rd ได้พยายามที่จะโน้มน้าวให้ Busch ทำการสร้างกล้องจุลทรรศน์อิเล็กตรอนตัวหนึ่งที่เขาจะได้ยื่นจดสิทธิบัตร

นักฟิสิกส์ชาวเยอรมัน Ernst Ruska และวิศวกรไฟฟ้า Max Knoll ได้สร้างกล้องจุลทรรศน์อิเล็กตรอนต้นแบบในปี 1931 มีกำลังการขยายสี่ร้อยเท่า อุปกรณ์นี้ได้สาธิตหลักการของกล้องจุลทรรศน์อิเล็กตรอนเป็นครั้งแรก อีกสองปีต่อมาในปี 1933 Ruska ได้สร้างกล้องจุลทรรศน์อิเล็กตรอนที่มีความคมชัดเกินกว่ากล้องจุลทรรศน์แบบแสงสามารถทำได้ นอกจากนี้ Reinhold Rudenberg ผู้อำนวยการทางวิทยาศาสตร์ของ Siemens-Schuckertwerke ได้รับสิทธิบัตรสำหรับกล้องจุลทรรศน์อิเล็กตรอนในเดือนพฤษภาคม 1931

ในปี 1932 Ernst Lubcke แห่ง Siemens & Halske ได้สร้างภาพออกมาได้จากกล้องจุลทรรศน์อิเล็กตรอนต้นแบบ เป็นการประยุกต์ใช้แนวคิดที่ได้อธิบายเอาไว้ในการยื่นขอจดสิทธิบัตรของ Rudenberg ห้าปีต่อมา (1937) บริษัทได้ให้ทุนกับงานของ Ernst Ruska และ Bodo von Borries และว่าจ้าง Helmut Ruska (น้องชายเอิร์นส์) ในการพัฒนาแอปพลิเคชันสำหรับกล้องจุลทรรศน์โดยเฉพาะอย่างยิ่งกับตัวอย่างทางชีวภาพ เช่นกันในปี 1937 Manfred von Ardenne ได้บุกเบิกกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (อังกฤษ: scanning electron microscope (SEM)) กล้องจุลทรรศน์อิเล็กตรอน"ในทางปฏิบัติ"ตัวแรกถูกสร้างขึ้นในปี 1938 ที่มหาวิทยาลัยโตรอนโตโดย Eli Franklin Burton และนักเรียน Cecil Hall James Hillier และ Albert Prebus จากนั้นซีเมนส์ได้ผลิตกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) เชิงพาณิชย์ตัวแรกในปี 1939 แม้กล้องจุลทรรศน์อิเล็กตรอนร่วมสมัยมีกำลังการขยายถึงสองล้านเท่าก็ตาม ในฐานะที่เป็นเครื่องมือทางวิทยาศาสตร์ พวกมันยังคงขึ้นอยู่กับต้นแบบของ Ruska

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) เป็นรูปแบบเดิมของกล้องจุลทรรศน์อิเล็กตรอน มันใช้ลำแสงอิเล็กตรอนไฟฟ้าแรงสูงในการสร้างภาพ ลำแสงอิเล็กตรอนถูกผลิตโดยปืนอิเล็กตรอนที่ทั่วไปแล้วได้ติดตั้งแคโทดที่มีไส้หลอดเป็นทังสเตนเพื่อเป็นแหล่งที่มาของอิเล็กตรอน ลำแสงอิเล็กตรอนถูกเร่งความเร็วโดยขั้วบวกปกติที่ 100 กิโลอิเล็กตรอนโวลท์ (kev) (40-400 kev) เมื่อเทียบกับแคโทด จากนั้นลำแสงจะถูกโฟกัสโดยเลนส์ไฟฟ้าสถิตและคลื่นแม่เหล็กไฟฟ้าและส่องผ่านชิ้นงานที่มีบางส่วนที่โปร่งใสกับอิเล็กตรอนและบางส่วนกระจายลำแสงออกไป เมื่อลำแสงอิเล็กตรอนผ่านพ้นออกมาจากชิ้นงานมันจะเก็บข้อมูลเกี่ยวกับโครงสร้างของชิ้นงานออกมาด้วยซึ่งจะมีการขยายโดยระบบเลนส์วัตถุประสงค์ (อังกฤษ: objective lens) ของกล้องจุลทรรศน์นั้น การเปลี่ยนแปลงเชิงพื้นที่ในข้อมูลนี้ ("ภาพ") อาจสามารถดูได้โดยฉายภาพอิเล็กตรอนที่ถูกขยายแล้วนี้ลงบนหน้าจอดูเรืองแสงที่เคลือบด้วยวัสดุสารเรืองแสงหรือ scintillator เช่นสังกะสีซัลไฟด์ หรืออีกทางเลือกหนึ่งภาพสามารถถูกบันทึกได้แบบการถ่ายรูปโดยฉายแสงอิเล็กตรอนโดยตรงลงบนแผ่นฟิล์มถ่ายรูป หรือสารเรืองแสงความละเอียดสูงอาจต่อเข้ากับตัวรับแสงของกล้องถ่ายรูปที่ใช้ CCD (อุปกรณ์ถ่ายเทประจุ) ด้วยระบบเลนส์ออปติคอลหรือตัวนำแสงแบบใยแก้ว ภาพที่จับได้โดย CCD อาจจะแสดงบนหน้าจอคอมพิวเตอร์

ความละเอียดของ TEM ถูกจำกัดเป็นส่วนใหญ่โดยความผิดปกติแบบทรงกลม (อังกฤษ: spherical aberration) (การหักเหของแสงตามขอบเลนส์) แต่รุ่นใหม่ของตัวแก้ความผิดปกติสามารถเอาชนะการผิดปกติแบบทรงกลมเหล่านั้นได้เพื่อเพิ่มความละเอียด การแก้ไขด้วยฮาร์ดแวร์ของความผิดปกติแบบทรงกลมสำหรับกล้องจุลทรรศน์อิเล็กตรอนความละเอียดสูงแบบส่องผ่าน (อังกฤษ: high-resolution transmission electron microscopy (HRTEM)) สามารถผลิตภาพที่มีความละเอียดต่ำกว่า 0.5 อังสตรอม (50 picometres) และกำลังขยายสูงกว่า 50 ล้านเท่า ความสามารถในการกำหนดตำแหน่งของอะตอมภายในวัสดุได้ทำให้ HRTEM เป็นเครื่องมือสำคัญสำหรับการวิจัยและการพัฒนาด้านนาโนเทคโนโลยี

โหมดที่สำคัญของการใช้ TEM คือการเลี้ยวเบนของอิเล็กตรอน (อังกฤษ: electron diffraction) ข้อดีของการเลี้ยวเบนของอิเล็กตรอนที่เหนือกว่าเทคนิคของผลึกวิทยา (อังกฤษ: X-ray crystallography) อยู่ที่ชิ้นงานไม่จำเป็นต้องเป็นผลึกเดี่ยวหรือแม้กระทั่งเป็นผงผลึก (อังกฤษ: polycrystalline powder) และนอกจากนี้การฟื้นฟูโครงสร้างด้วยการแปลงแบบฟูริเยร์ (อังกฤษ: Fourier transform reconstruction) ของโครงสร้างที่ถูกขยายแล้วของวัตถุจะเกิดขึ้นทางกายภาพ จึงหลีกเลี่ยงความจำเป็นสำหรับการแก้ปัญหาแบบเฟส (อังกฤษ: phase problem) ที่ต้องเผชิญกับ X-ray crystallographers หลังจากได้รับรูปแบบ X-ray diffraction ของผลึกเดี่ยวหรือผงผลึกของพวกมัน ข้อเสียที่สำคัญของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านคือความจำเป็นสำหรับตัวอย่างที่ต้องใช้ส่วนที่บางมากโดยทั่วไปประมาณ 100 นาโนเมตร ตัวอย่างทางชีวภาพโดยทั่วไปจะต้องคงที่ทางเคมี แห้งและถูกฝังตัวอยู่ในเรซินลิเมอร์เพื่อรักษาเสถียรภาพของพวกมันให้พอที่จะยอมให้ตัดเซ็กชั่นอย่างบางเฉียบได้ เซ็กชั่นของตัวอย่างทางชีวภาพ โพลิเมอร์อินทรีย์และวัสดุที่คล้ายกันอาจจะต้องการการดูแลเป็นพิเศษด้วยป้ายชื่ออะตอมหนักเพื่อให้ได้ความคมชัดของภาพตามที่ต้องการ

ไม่เหมือนกับแบบ TEM ที่อิเล็กตรอนของลำแสงไฟฟ้าแรงสูงจะเก็บภาพของชิ้นงาน, ลำแสงอิเล็กตรอนของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ไม่ได้เก็บภาพที่สมบูรณ์ของชิ้นงานได้ตลอดเวลา SEM จะผลิตภาพโดยตรวจสอบชิ้นงานโดยใช้ลำแสงอิเล็กตรอนที่โฟกัสให้กราด(สแกน)ไปทั่วพื้นที่สี่เหลี่ยมของชิ้นงาน (เหมือนการสแกนจอภาพ CRT (อังกฤษ: raster scan)) เมื่อลำแสงอิเล็กตรอนมีปฏิสัมพันธ์กับชิ้นงาน มันจะสูญเสียพลังงานตามความหลากหลายของกลไก พลังงานที่หายไปจะถูกแปลงเป็นรูปแบบทางเลือกอื่นเช่นความร้อน การปล่อยอิเล็กตรอนทุติยภูมิพลังงานต่ำและอิเล็กตรอนสะท้อนกลับพลังงานสูง การปล่อยแสง (cathodoluminescence) หรือการเปล่งรังสีเอกซ์ พลังงานทั้งหมดเหล่านี้เป็นสัญญาณของข้อมูลเกี่ยวกับคุณสมบัติของพื้นผิวของชิ้นงาน เช่นรูปร่างและองค์ประกอบของมัน ภาพที่แสดงโดย SEM จะแปลความเข้มที่แตกต่างใดๆของสัญญาณเหล่านี้ให้เป็นภาพที่อยู่ในตำแหน่งที่สอดคล้องกับตำแหน่งของลำแสงบนชิ้นงานตอนที่สัญญาณถูกสร้างขึ้น ในภาพ SEM ของมดที่แสดงทางด้านขวา ภาพถูกสร้างขึ้นมาจากสัญญาณที่ผลิตโดยเครื่องตรวจจับอิเล็กตรอนทุติยภูมิซึ่งเป็นโหมดการสร้างภาพปกติหรือทั่วไปใน SEMs ส่วนใหญ่

โดยทั่วไปความละเอียดของภาพจาก SEM มีความคมชัดด้อยกว่าของ TEM อย่างไรก็ตามเนื่องจากภาพ SEM เป็นกระบวนการที่เกิดบนพื้นผิวมากกว่าการส่องผ่าน มันจึงสามารถที่จะสร้างภาพตัวอย่างที่เป็นกลุ่มได้ในขนาดหลายเซนติเมตรขึ้นไปและ (ขึ้นอยู่กับการออกแบบและการตั้งค่าของเครื่องมือ) มีความลึกของสนามที่สูง ดังนั้นมันจึงสามารถผลิตภาพที่มีการแสดงที่ดีของรูปทรงสามมิติของกลุ่มตัวอย่าง ประโยชน์ของ SEM อีกประการหนึ่งคือความหลากหลายของมันที่เรียกว่ากล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดสิ่งแวดล้อม (อังกฤษ: environmental scanning electron microscope (Esem)) ที่สามารถผลิตภาพที่มีคุณภาพและความละเอียดเพียงพอสำหรับกลุ่มตัวอย่างที่เปียกหรือถูกเก็บอยู่ในสูญญากาศหรือก๊าซต่ำ อุปกรณ์นี้จะช่วยอำนวยความสะดวกในการถ่ายภาพตัวอย่างทางชีวภาพที่มีความไม่แน่นอนในสูญญากาศสูงของกล้องจุลทรรศน์อิเล็กตรอนแบบเดิม

ในคอนฟิกูเลชั่นที่พบมากที่สุดของพวกมันกล้องจุลทรรศน์อิเล็กตรอนผลิตภาพที่มีค่าความสว่างเดียวต่อพิกเซลโดยผลลัพธ์ที่ได้แสดงผลมักจะอยู่ในระดับสีเทา อย่างไรก็ตามบ่อยครั้งที่ภาพเหล่านี้จะทำเป็นสีโดยใช้ซอฟแวร์ที่มีการตรวจสอบคุณลักษณะหรือง่ายๆเพียงแค่ใช้มือด้วยโปรแกรมแก้ไขภาพกราฟิก วิธีนี้มักจะทำเพื่อความสวยงามหรือสำหรับการอธิบายโครงสร้างและโดยทั่วไปก็ไม่ได้เพิ่มข้อมูลใดๆเกี่ยวกับตัวอย่าง

ในบางคอนฟิกูเลชั่นข้อมูลเพิ่มเติมเกี่ยวกับคุณสมบัติของชิ้นงานถูกรวบรวมต่อพิกเซล ปกติโดยใช้เครื่องตรวจจับหลายชั้น ใน SEM คุณลักษณะของรูปร่างและความคมชัดแบบวัสดุสามารถสร้างภาพได้โดยใช้เครื่องตรวจจับอิเล็กตรอนสะท้อนกลับหนึ่งคู่และคุณลักษณะดังกล่าวสามารถซ้อนทับในภาพสีภาพเดียวโดยกำหนดสีหลักที่แตกต่างกันไปแต่ละคุณลักษณะ ในทำนองเดียวกันการรวมกันของสัญญาณอิเล็กตรอนสะท้อนกลับและทุติยภูมิสามารถกำหนดให้มีสีที่แตกต่างกันและซ้อนทับกันบน Micrograph สีเดียวที่แสดงคุณสมบัติของชิ้นงานพร้อมกัน

ในวิธีการที่คล้ายกัน อิเล็กตรอนทุติยภูมิและเครื่องตรวจจับอิเล็กตรอนสะท้อนกลับมีการซ้อนทับกันและสีหนึ่งได้ถูกกำหนดให้ในแต่ละภาพที่จับได้โดยแต่ละเครื่องตรวจจับ ทำให้ได้ผลในตอนท้ายเป็นภาพสีผสมที่สีทั้งหลายมีความสัมพันธ์กับความหนาแน่นของส่วนประกอบต่างๆ วิธีการนี้เป็นที่รู้จักกันว่าเป็น SEM แบบมีสีที่ขึ้นอยู่กับความหนาแน่น (อังกฤษ: Density-dependent colour SEM (DDC-SEM)) ภาพ micrograph ที่ผลิตโดย DDC-SEM จะเก็บข้อมูลรูปร่าง(ซึ่งถูกจับได้ดีกว่าที่จับได้โดยต้วตรวจจับอิเล็กตรอนทุติยภูมิและผสมเข้าด้วยกันกับข้อมูลเกี่ยวกับความหนาแน่น)ที่ได้รับจากเครื่องตรวจจับอิเล็กตรอนสะท้อนกลับ

บางชนิดของตัวตรวจจับที่ใช้ใน SEM มีความสามารถในการวิเคราะห์และสามารถให้ข้อมูลหลายรายการในแต่ละพิกเซล ตัวอย่างเช่นตัวตรวจจับในเครื่องเอกซ์เรย์สเปกโตรสโคปีแบบพลังงานกระจาย (อังกฤษ: Energy-dispersive X-ray spectroscopy (EDS)) ที่ใช้ในการวิเคราะห์ธาตุและระบบกล้องจุลทรรศน์แบบเปล่งแสงด้วยคาโทด (อังกฤษ: Cathodoluminescence microscope (CL)) ที่วิเคราะห์ความเข้มข้นและสเปกตรัมของการเปล่งแสงที่เกิดขึ้นจากอิเล็กตรอน (อังกฤษ: electron-induced luminescence) ใน (ตัวอย่างเช่น) ชิ้นตัวอย่างทางธรณีวิทยา ในระบบ SEM การใช้ตัวตรวจจับเหล่านี้มันเป็นเรื่องธรรมดาที่จะให้รหัสสีกับสัญญาณทั้ได้และซ้อนทับพวกมันออกกมาเป็นนภาพสีภาพเดียวเพื่อที่ว่าความแตกต่างทั้งหลายในการกระจายของส่วนประกอบต่างๆของชิ้นงานสามารถมองเห็นได้อย่างชัดเจนและสามารถเทียบกันได้ เพื่อเป็นทางเลือก ภาพอิเล็กตรอนทุติยภูมิมาตรฐานสามารถถูกรวมเข้ากับช่องทางแบบองค์ประกอบ (อังกฤษ: compositional channel) หนึ่งช่องทางหรือมากกว่าเพื่อให้โครงสร้างของชิ้นงานและองค์ประกอบสามารถนำมาเปรียบเทียบกันได้ ภาพดังกล่าวสามารถถูกทำขึ้นในขณะที่มีการรักษาความสมบูรณ์เต็มรูปแบบของสัญญาณเดิมซึ่งไม่ได้ถูกแก้ไขในทางใดทางหนึ่ง

ในกล้องจุลทรรศน์อิเล็กตรอนแบบสะท้อน (อังกฤษ: Reflection electron microscope (REM)) เช่นเดียวกับใน TEM ลำแสงอิเล็กตรอนตกลงบนพื้นผิว แต่แทนที่จะใช้การส่องผ่าน (ใน TEM) หรืออิเล็กตรอนทุติยภูมิ (ใน SEM) ลำแสงที่สะท้อนของอิเล็กตรอนที่กระจายอย่างยืดหยุ่นจะถูกตรวจพบ เทคนิคนี้จะมักจะเชื่อมต่อเข้ากับการเลี้ยวเบนของอิเล็กตรอนพลังงานสูงสะท้อน (อังกฤษ: reflection high energy electron diffraction (RHEED)) และเครื่องสเปกโทรสโกปีแบบสะท้อนการสูญเสียพลังงานสูง (อังกฤษ: reflection high-energy loss spectroscopy (RHELS)) การแปรเปลี่ยนอีกประการหนึ่งคือกล้องจุลทรรศน์อิเล็กตรอนพลังงานต่ำแบบขั้วหมุน (อังกฤษ: spin-polarized low-energy electron microscopy (SPLEEM)) ซึ่งจะใช้สำหรับการมองหาจุลภาคของโดเมนแม่เหล็ก

บทความหลัก: กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านและส่องกราด เครื่อง STEM นี้จะสแกนลำแสงที่โฟกัสแล้วให้ตกกระทบทั่วชิ้นงาน (เช่นเดียวกับ TEM) ชิ้นงานจะถูกทำให้บางเพื่ออำนวยความสะดวกในการตรวจจับอิเล็กตรอนที่กระจาย"ผ่าน"ชิ้นงาน ความละเอียดสูงของ TEM จึงสามารถเป็นไปได้ใน STEM การดำเนินการ (และความผิดปรกติ) จากการโฟกัสจะเกิดขึ้นก่อนที่อิเล็กตรอนจะกระทบชิ้นงานใน STEM แต่ใน TEM จะเกิดทีหลัง STEM จะใช้การสแกนลำแสงเหมือนกับ SEM เพื่อลดความยุ่งยากในการถ่ายภาพเป็นรูปวงแหวนสนามมืด (อังกฤษ: annular dark-field imaging) (ซึ่งเป็นเทคนิคการวิเคราะห์อีกอันหนึ่ง) แต่ยังหมายถึงว่าข้อมูลภาพจำเป็นต้องอยู่ในรูปอนุกรมมากกว่าอยู่ในรูปขนาน บ่อยครั้งที่ TEM สามารถถูกติดตั้งด้วยตัวเลือกการสแกน มันจึงสามารถทำงานได้ทั้งแบบ TEM และ STEM

วัสดุที่จะดูด้วยกล้องจุลทรรศน์อิเล็กตรอนอาจจำเป็นต้องผ่านกระบวนการเพื่อผลิตเป็นตัวอย่างชิ้นงานที่เหมาะสม เทคนิคที่จำเป็นจะแตกต่างกันไปขึ้นอยู่กับชิ้นงานและการวิเคราะห์ที่จำเป็น ได้แก่:

กล้องจุลทรรศน์อิเล็กตรอนมีราคาแพงในการสร้างและบำรุงรักษา แต่เงินทุนและค่าใช้จ่ายในการดำเนินงานของกล้องจุลทรรศน์ระบบแสงจุดโฟกัสร่วมในเวลานี้จะคาบเกี่ยวกับบรรดาของกล้องจุลทรรศน์อิเล็กตรอนพื้นฐาน กล้องจุลทรรศน์ที่ออกแบบเพื่อให้บรรลุความละเอียดสูงจะต้องติดตั้งอยู่ในอาคารที่มั่นคง (บางครั้งใต้ดิน) ที่มีบริการพิเศษเช่นระบบกำจัดสนามแม่เหล็ก

ชิ้นตัวอย่างส่วนใหญ่จะต้องมีการส่องดูในสูญญากาศเนื่องจากโมเลกุลที่ทำอากาศขึ้นจะกระจายอิเล็กตรอน ข้อยกเว้นเดียวสำหรับกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดสิ่งแวดล้อมซึ่งยอมให้ตัวอย่างที่ผ่านการชุ่มน้ำสามารถส่องดูได้ในสภาพแวดล้อมที่เปียกแรงดันต่ำ (ไม่เกิน 20 Torr หรือ 2.7 ปาสคาล)

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดที่ทำงานในโหมดสูญญากาศสูงธรรมดามักจะสร้างภาพชิ้นงานที่เป็นตัวนำไฟฟ้า ดังนั้นวัสดุที่ไม่นำไฟฟ้าจึงต้องเคลือบด้วยสารตัวนำ (ทอง/โลหะผสมแพลเลเดียม คาร์บอน ออสเมียม ฯลฯ) โหมดแรงดันต่ำของกล้องจุลทรรศน์ที่ทันสมัยทำให้เป็นไปได้ในการการสังเกตชิ้นงานที่ไม่นำไฟฟ้าโดยไม่ต้องเคลือบ วัสดุที่ไม่นำไฟฟ้าสามารถถ่ายภาพโดยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดแบบความดันแปร (หรือแบบสิ่งแวดล้อม)

ชิ้นตัวอย่างขนาดเล็กและมีความเสถียรเช่นท่อคาร์บอนนาโน เปลือกไดอะตอม (อังกฤษ: diatom frustules) และผลึกแร่ขนาดเล็ก (เช่นแร่ใยหิน) ไม่จำเป็นต้องมีการดูแลเป็นพิเศษก่อนที่จะมีการตรวจสอบในกล้องจุลทรรศน์อิเล็กตรอน ตัวอย่างของวัสดุไฮเดรทรวมทั้งเกือบทั้งหมดของตัวอย่างทางชีวภาพจะต้องมีการจัดเตรียมในรูปแบบต่างๆเพื่อสร้างเสถียรภาพให้กับพวกมัน ลดความหนาของพวกมัน (ทำเซ็กชั่นให้บางเฉียบ) และเพิ่มความคมชัดด้านอิเล็กตรอนออปติคอล (ย้อมสี) กระบวนการเหล่านี้อาจส่งผลให้เกิด"สิ่งแปลกปลอม" แต่มักจะสามารถระบุได้โดยเปรียบเทียบผลลัพธ์ที่ได้โดยใช้วิธีการเตรียมชิ้นงานหลายๆอย่างที่แตกต่างกันอย่างสิ้นเชิง นักวิทยาศาสตร์ที่ทำงานในสนามโดยทั่วไปเชื่อว่าผลลัพธ์จากเทคนิคการเตรียมการที่หลากหลายต่างๆจะถูกนำมาเปรียบเทียบและไม่มีเหตุผลที่พวกมันจะผลิตสิ่งแปลกปลอมที่คล้ายกันและมันมีเหตุผลที่เชื่อได้ว่าคุณสมบัติกล้องจุลทรรศน์อิเล็กตรอนสอดคล้องกับบรรดาคุณสมบัติของเซลล์ทั้งหลายที่มีชีวิต ตั้งแต่ปี 1980s การวิเคราะห์ของชิ้นตัวอย่างที่มีการเตรียมแบบเย็นยิ่งยวดจนกลายเป็นแก้วยังได้กลายเป็นที่ใช้มากขึ้นโดยนักวิทยาศาสตร์ ยืนยันมากขึ้นถึงความถูกต้องของเทคนิคนี้


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301